Using IMPUTE2 for phasing of GWAS
and subsequent imputation

Bryan Howie® and Jonathan Marchini®

OLUniversity of Chicago

lSUniversity of Oxford
23 September 2010

OVERVIEW

In this document, we show how to use IMPUTE2 to impute from a reference panel of
phased haplotypes into a genome-wide association dataset (e.g., a set of cases and
controls genotyped on a SNP chip). We place particular emphasis on the idea of
“pre-phasing” the GWAS data without a reference panel, then using the resulting
haplotypes to perform fast imputation from a reference panel of interest. Separating
the phasing and imputation steps in this way! is beneficial because most of the
computing burden of imputation comes from accounting for the unknown phase of
the GWAS individuals; if the GWAS data were provided as haplotypes rather than
unphased diplotypes, all imputation methods would be much faster. This point is
particularly relevant when an investigator wants to perform multiple rounds of
imputation into a single GWAS dataset - e.g., re-imputing as larger reference panels
become available over time. In that context, it can be wasteful to re-phase the
dataset with each round of imputation. This document explains how IMPUTEZ2 can
be used to phase a GWAS dataset and perform fast downstream imputation with the
resulting haplotypes.

We begin with a short preamble and quick-start guide, followed by an introduction
to the required files and their formats. We then discuss the preferred strategy for
applying IMPUTEZ2 in a genome-wide analysis, which involves splitting the genome
into non-overlapping chunks (typically 5 Mb each), phasing/imputing the chunks
separately on parallel computer processors, and stitching the imputation results
back together into whole-chromosome output files, which can then be passed

1 “Conventional” imputation algorithms - IMPUTE1, MACH1, BEAGLE, fastPHASE -
perform phasing and imputation in a single, analytical step that takes advantage of
the structure of their hidden Markov models of DNA sequence variation. By
contrast, IMPUTEZ2 has separate phasing and imputation modules, and it alternates
between these during the course of an MCMC run. The IMPUTE2 strategy was
motivated both by the computational considerations discussed in this document and
by the fact that, when the phasing step is isolated, more of the information in the
data can inform the phasing. This leads to more accurate GWAS haplotypes and
ultimately to more accurate imputation.

directly to our association analysis program SNPTEST. Within this framework, we
demonstrate a couple of ways that IMPUTEZ2 can be used for imputation (ranging
from “best-guess” GWAS haplotypes to full posterior averaging over the GWAS
phase uncertainty), and we provide some guidance about the running time vs.
accuracy tradeoffs of these strategies.

We also briefly discuss some empirical results and computational benchmarks. On a
realistic dataset and a modest computing cluster, IMPUTEZ2 can perform genome-
wide phasing in ~12 hours of real time and genome-wide imputation (given phased
haplotypes from the first step) in ~1.5 hours, with a light RAM footprint and high
accuracy.

TABLE OF CONTENTS

SOFTWARE WEBPAGE
How TO USE THIS MANUAL
QUICK START
REQUIRED FILES
BASIC WORKFLOW
SNP AND SAMPLE FILTERING OF GWAS DATA
SPLITTING THE GENOME INTO CHUNKS FOR PARALLEL ANALYSIS
PRE-PHASING GWAS GENOTYPES
Printing posterior haplotype samples
Printing best-guess haplotypes
USING PRE-PHASED GWAS HAPLOTYPES FOR DOWNSTREAM IMPUTATION
Imputing from posterior haplotype samples
Imputing from best-guess haplotypes
COMBINING CHUNK-SPECIFIC OUTPUT FILES INTO WHOLE-CHROMOSOME
FILES
PERFORMING POST-IMPUTATION QC AND ASSOCIATION TESTING
EMPIRICAL RESULTS AND COMPUTATIONAL BENCHMARKS
PRACTICAL GUIDANCE
BUILDING A PIPELINE

CONTACTING THE AUTHORS

- B SN

O© © 3 3

10
10
11
11
12

12
12
13
14
15

SOFTWARE WEBPAGE

This document focuses on the basic functionality of IMPUTEZ2, without getting into
the many bells and whistles that are implemented in the program. If you want more
details, the most definitive and up-to-date information about the program can be
found at our software webpage:

https://mathgen.stats.ox.ac.uk/impute/impute v2.html.

HOW TO USE THIS MANUAL

This document probably contains more detail than you need to know. In the spirit of
“show, don'’t tell”, we have also created some working bash scripts and example files
that illustrate how to run IMPUTEZ2 in the scenarios discussed below. Studying these
examples is probably the fastest way to learn the structure of the analysis, so we
suggest that you start there. Once you understand the basic workflow, you can use
this guide as a definitive reference for specific questions about parameter choices
and implementation details.

The QUICK START guide below shows how to perform a simple imputation analysis
with the example files. The example scripts are described in more detail in the
section on BUILDING A PIPELINE at the end of the document.

QUICK START

The example scripts and data reside in the impute2 examples/ directory that was
included with this download. Note that the copy of IMPUTE?2 in this directory was
compiled to work on a linux 64-bit computer; if you are running a different
architecture, you will need to replace the IMPUTE2 executable with an appropriate
one downloaded from our website.

The first thing you need to do is phase your GWAS data. To do so, you can type the
following text on the command line (press Enter when you're done):

./prototype phasing job.sh 10 1 leé6

This command will invoke a bash script called prototype phasing job.sh. This
script takes three arguments: the chromosome number, the starting chromosomal
position of the analysis region, and the ending position of the analysis region. As we
explain in some detail later on, the latter two arguments are very helpful for
splitting up the genome into tractable pieces that can be analyzed on a parallel
computing cluster. In this example, we have asked IMPUTEZ to phase only the first
million bases on chromosome 10.

Now that we have phased our GWAS genotypes, we can use the resulting haplotypes
to impute additional SNPs from a reference panel. There are two modules for

performing the imputation. The first module uses the “best-guess” haplotypes from
the phasing step above:

./prototype imputation_ job best guess haps.sh 10 1 1leé6

Note that the chromosome number and analysis chunk boundaries are the same as
in the first run; it is important that these arguments remain the same across the
phasing and imputation steps.

Another way of doing the imputation is to use multiple realizations of the GWAS
haplotypes, which were sampled during the phasing run, as follows:

./prototype imputation_ job posterior sampled haps.sh 10 1 1leé6

There should now be three files in the results/ subdirectory that end in the suffix
‘.impute2’. Two of these have the word ‘imputation’ in their file names - these are
your results! We will spend the rest of this document explaining what exactly is
happening in each of these scripts and how they fit together.

REQUIRED FILES

To perform an imputation analysis with IMPUTEZ2, four basic kinds of files are
needed:

1. GWAS genotypes file - File containing SNP chip genotypes for a set of GWAS
individuals. The format is described at
http://www.stats.ox.ac.uk/~marchini/software/gwas/file format.html#Gen
otype File Format. We distribute a program called GTOOL
(http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html) that can
convert PED files into this format.

2. Genetic map file - File containing genetic map positions (i.e., fine-scale
recombination rates). This file is used to set some parameters of IMPUTE2's
hidden Markov model. Genetic map files for all human autosomes can be
downloaded from here: https://mathgen.stats.ox.ac.uk/wtccc-
software/recombination rates/genetic map b36 combined.tgz.

3. Reference panel haplotypes file - File containing phased reference panel
haplotypes for imputation. Each row is a SNP and each column is a haplotype,
with columns separated by single spaces. SNPs are assumed to be biallelic,
and haplotype alleles must consist entirely of 0’s and 1’s.

4. Reference panel legend file - File containing information about the SNPs in
the haplotypes file, including rsID, chromosomal position, identity of allele
labeled ‘0’, and identity of allele labeled ‘1’. This file contains one line for each
line in the haplotypes file, plus a header line. Paired legend and haplotype

files from the 1,000 Genomes Project can be downloaded from here:
https://mathgen.stats.ox.ac.uk/impute/1000g jun2010 b36 ceu.tgz. Other
versions of these files (e.g., for different populations) are available on the
IMPUTE?Z2 webpage.

IMPUTEZ2 does not read chromosome numbers from input files (unlike, say, PLINK),
so each of these four kinds of files must be split up by chromosome. We have already
done this for the genetic map and reference panel files linked above, so you just
need to ensure that your formatted GWAS genotypes are divided into one file per
chromosome.

If your GWAS genotypes have already been filtered and aligned to the forward
strand of the human reference sequence, you will not need any other input files.
Otherwise, we provide a number of options for strand alignment and SNP/sample
filtering in the software, with details described here:
https://mathgen.stats.ox.ac.uk/impute/impute v2.html#Program Options.

BASIC WORKFLOW

Once you have obtained the necessary input files for your imputation analysis, you
will need to perform the following steps, which are explained further in the sections
that follow:

1. Apply standard SNP and sample filters to your GWAS genotypes.

2. Split each chromosome into smaller chunks for analysis. Each chunk will be
regarded as a separate, fully parallelizable analysis unit until Step 5.

3. Phase the genotyped SNPs in your GWAS dataset.

a. Produce best-guess haplotypes for every GWAS individual in a given
analysis chunk.

b. Store multiple versions of the GWAS haplotypes, which are
statistically sampled by the phasing algorithm during an MCMC run.

4. Use the best-guess or sampled haplotypes (the choice depends on running
time/accuracy considerations) to impute all of the reference-panel-only SNPs
in a chunk.

5. Combine chunk-specific imputation results into whole-chromosome
imputation output files.

6. Run post-imputation QC and association tests on the output file from each
chromosome.

SNP AND SAMPLE FILTERING OF GWAS DATA

Before getting started with phasing/imputation, you should apply standard QC
filters to your GWAS data to remove SNPs with genotyping artifacts and individuals
with systematically poor genotype quality. It is also helpful to align the allele coding
of your genotypes to the forward strand of the human reference sequence, since this
will make the imputation step easier.

SPLITTING THE GENOME INTO CHUNKS FOR PARALLEL ANALYSIS

A genome-wide IMPUTEZ2 analysis usually begins by breaking each chromosome
into smaller chunks, typically ~5 Mb each. There are at least three good reasons to
do this. First, dividing up the data facilitates parallel computing, which prevents
large chromosomes from causing bottlenecks in the analysis pipeline. Second,
IMPUTE?Z uses a population genetic approximation that works best in regions which
have not experienced a large amount of historical recombination, which means that
you will get better accuracy in a 5 Mb chunk than on a whole chromosome. Third,
splitting up a chromosome should allow you to analyze all of your study individuals
together, which will lead to better phasing and imputation accuracy than you would
obtain if you subdivided the GWAS individuals for faster computation.

You do not need to physically split your dataset into chunk-specific files; IMPUTE2
has a command-line option called —int that will read only the desired region from a
whole-chromosome file. For example, typing ‘—~int 5e6 10e6’ in a call to IMPUTE2
would cause it to process only positions 5,000,000-10,000,000 on the current
chromosome.

The main theoretical danger of splitting chromosomes into separate analysis chunks
is that accuracy may decrease near the edges of each chunk?. To guard against this,
IMPUTEZ2 automatically adds an internal buffer region (default=250 kb) to either
side of each chunk. This buffer is used in the phasing/imputation, but it does not
appear in the final output file. You can change the buffer size via the command-line
argument —buf fer (details on website).

2 A related, hypothetical worry about analyzing sub-chromosomal chunks is that
rare alleles on long haplotype backgrounds may become harder to impute. One way
to mitigate this effect is to use larger buffer regions around each chunk. It is also
worth noting that statistical phasing has inherently limited accuracy, so this kind of
signal might be obscured by phasing errors even if you analyzed very large chunks.

7

The —int and —buf fer options make it easy to specify chunk boundaries. For
example, you could define the following 5-Mb analysis intervals on a given
chromosome:

[1, 5e6]
[5e6+1, 10e6]
[10e6+1, 15e6]

Consider the second chunk: if you set ‘-int 5000001 10e6 —buffer 250 onthe
command line, the true analysis interval would be [5e6+1-0.25e6, 10e6+0.25e6],
but the output file would only contain SNPs in [5e6+1, 10e6]. Hence, defining non-
overlapping chunks in this way will cause every SNP to appear in exactly one output
file, and you can simply concatenate the chunk-specific imputation output files to
produce a chromosome-wide output file. Combining phased haplotypes across
chunks is possible, if slightly trickier; we will not discuss the topic here since you do
not need to combine the haplotypes across chunks to perform imputation from pre-
phased haplotypes.

The easiest way to define chunks for a chromosome is as shown above: start at ‘1’
and then apply a constant increment until the end of the chromosome is reached.
This strategy generally works, although it may stumble in a few special cases:

1. Ateither end of a chromosome, the reference panel SNPs will occasionally
extend more than a chunk increment (e.g., 5 Mb) past the last SNP in your
GWAS data. The program cannot make predictions in chunks with no GWAS
SNPs, so the best approach is to merge such chunks with neighboring chunks
that do contain GWAS SNPs3.

2. Chunks that span the centromere may sometimes contain very few SNPs.
These can be merged with flanking chunks, if desired. One way to avoid this
issue is to define chunk boundaries separately on each arm of a metacentric
chromosome.

3. Ifyou start at position ‘1’ and define chunks by a constant increment, the last
chunk on a chromosome may contain very few SNPs by chance. We usually
merge the last chunk with the second-to-last chunk to avoid poor imputation
at the ends of chromosomes.

Once you have defined the chunk boundaries for each chromosome, it is up to you
how to store this information and convey it to IMPUTEZ. We explain the mechanism
that we use in the section on BUILDING A PIPELINE at the end of this document.

3 Note, however, that the imputation quality will still be low in regions where there
are reference panel SNPs but not GWAS SNPs over multi-megabase stretches.

8

PRE-PHASING GWAS GENOTYPES

Once you have settled on chunk boundaries within each chromosome, the next step
is to phase your GWAS data in each chunk and store the results for later. IMPUTE2
uses a Markov chain Monte Carlo (MCMC) algorithm to phase a set of genotypes, and
this can produce two kinds of output:

1. Posterior-sampled haplotypes. Each “iteration” of the MCMC generates one
realization of the haplotypes underlying your GWAS data, as inferred from a
statistical model of population genetic variation. If you want to store the
most complete output possible (which will in turn give you the greatest
flexibility in downstream analysis), you can ask the program to print out
every set of haplotypes that it samples during a phasing run.

2. Asan alternative, you can reduce the posterior haplotype samples into a
single set of consensus or “best-guess” haplotypes for your GWAS data in a
given chunk. This approach will inevitably discard some of the information
from the phasing (e.g., about the level and distribution of uncertainty in the
haplotypes), but it can simplify and speed up downstream imputation.

These two output settings can be used separately or together. In the prototype
analysis pipeline that is implemented in the example scripts provided with this
download, we produce both kinds of output at the same time, and we think that this
is good practice in general.

Printing posterior haplotype samples

IMPUTEZ includes a few command-line options to facilitate printing of posterior
haplotype samples. The -stage one and —hap_samp dir options are designed to
work together by automatically naming the sampled haplotype files in a fairly
foolproof manner. The -stage_one flag tells the program that this is the first step
in a two-stage imputation run, where the first stage phases the observed data
(printing posterior haplotype samples along the way) and the second stage imputes
untyped SNPs using the sampled haplotypes and a reference panel. If your GWAS
genotype file is named [-g] (which is the IMPUTEZ2 input option for that file) and
your chunk boundaries are [A,B], the -stage_one flag will cause the program to
print files with names like these:

[-g] posA-B hapsampl.gz
[-g] posA-B _hapsamp2.gz
[-g] posA-B_hapsamp3.gz

Each file contains the full set of haplotypes (two per GWAS individual, comprised of
all SNPs in the current chunk+buffer) from a single iteration of the MCMC, and the
iteration number is reported as hapsamp[iteration]. The file names also include
the chunk boundaries in the form posa-B; this distinguishes the results of the

9

current analysis from other chunks on the same chromosome that may be running
in parallel.

By default, -stage_one will cause these sampled haplotype files to be printed in the
same directory as your input genotype file. If you would prefer to put them
somewhere else, you can specify a different directory as an argument to the
—hap_samp_dir option. We provide an example of this in our prototype analysis
pipeline.

If you would rather have more control over the file naming instead of relying on
IMPUTEZ2’s automated system, there is also an alternative option called
—hap_samp_out_g. If you would like more information about how this works,
please check the online documentation or contact the authors.

Printing best-guess haplotypes

If you would like IMPUTE2 to print best-guess haplotypes, you simply need to
activate two flags on the command line: -phase and
—include_buffer_ in output. The -phase flag tells the program to create and
print best-guess haplotypes, and the —include buffer in output flag specifies
that the haplotypes should include the buffer region. The buffer is usually omitted
from IMPUTE2 output files, but in this case we want to preserve it in order to avoid
edge effects in the next stage of the analysis (imputation).

When -phase is activated, the program will print the best-guess haplotypes to a file
called [-o]_haps, where [-o0] is the name of the main output file that you specified
on the command line. For those who are technically-inclined: these haplotypes are
produced internally from the MCMC by “minimizing the expected switch error” over
the posterior haplotype samples.

USING PRE-PHASED GWAS HAPLOTYPES FOR DOWNSTREAM IMPUTATION

Now that you have phased your GWAS genotypes, it should be very fast to impute
untyped SNPs from a reference panel of haplotypes. We find that it is easiest to
continue analyzing the data in chunks at this stage of the pipeline - i.e., the
haplotypes you produced in a given chromosome chunk will now be used to
perform imputation in that chunk.

As explained in the section on REQUIRED FILES near the beginning of this document,
the basic ingredients of an IMPUTEZ2 imputation analysis are a GWAS genotypes file,
a genetic map file, a reference panel haplotypes file, and a reference panel legend
file; the command-line options for these are —g, —m, —h , and —1, respectively. The
discussion in this section assumes that these files have been provided to the
program, with exceptions noted below.

10

In parallel to the previous section, we can impute the missing genotypes from either
posterior haplotype samples or best-guess haplotypes. Imputing from best-guess
haplotypes will be faster, but it will also sacrifice some accuracy; imputing from
sampled haplotypes is preferable from a statistical point of view (since it accounts
for the uncertainty of the GWAS phasing) and yields more accurate results, but this
small boost in accuracy may not be worth the additional running time if resources
are limited.

Imputing from posterior haplotype samples

Much as the -stage_one flag was used to help name sampled haplotype files in the
pre-phasing step, the -stage_two flag is designed to carry this information through
to the imputation step. In fact, you should be able to use almost exactly the same
command-line call for this step, except that -stage two will replace -stage one,
the -h and -1 reference panel files will be included this time, and we will drop the
phasing-specific options (—phase and —include_buffer_ in output). This can be
seen by comparing the IMPUTE2 calls in the example scripts

protype phasing job.shand

prototype imputation job posterior sampled haps.sh.

By default, IMPUTEZ2 will read in the sampled haplotypes from each phasing
iteration (excluding the initial burn-in iterations) and use them to impute the
untyped SNPs; it will then average across these imputations to produce posterior
probabilities for each unobserved genotype. Averaging over iterations in this way is
good statistical practice, but for N iterations (not counting burn-in) the running time
will be roughly N times longer than it would take to impute from a single set of best-
guess haplotypes.

As an in-between option, you can choose to impute from every jth set of sampled
haplotypes out of N possible sets; this is controlled by the —thin option in IMPUTEZ2.
By default, —thin is equal to 1; i.e., the program imputes from every set of sampled
haplotypes. If you instead set ‘~thin 5’ on the command line, the program would
only impute from the 1st, 6th, 11th, ... sets of sampled haplotypes. For a thinning
interval of j, the running time will be reduced by a factor of j, and the accuracy will
be somewhat less than if you had averaged across all of the sampled haplotype sets.

Imputing from best-guess haplotypes

Imputing from best-guess haplotypes is very simple. IMPUTEZ2 will perform a single
imputation step rather than running MCMC in this situation, and the main change on
the command line is to replace the —g file (unphased GWAS genotypes) with a
—known_haps_g file. This is just the best-guess haplotype output file from the
phasing step (the file whose name ends in _haps). IMPUTEZ2 will impute the
untyped alleles in each phased haplotype, then convert these allelic probabilities
into diploid genotype probabilities for each GWAS individual, which is trivial under
the reasonable assumption of HWE.

11

COMBINING CHUNK-SPECIFIC OUTPUT FILES INTO WHOLE-CHROMOSOME FILES

The steps described above will produce a number of chunk-specific imputation
output files for each chromosome, with file names specified by the —o option in
IMPUTEZ. Before passing this information to SNPTEST (our association testing
software), it is usually helpful to combine these output files into full-chromosome
files. On linux computing systems, this is simply a matter of concatenating the
chunk-specific —o files using the ‘cat’ command. For example:

cat chrl2.chunkl.output chrl2.chunk2.output ... > \
chrl2.allChunks.output

Note that the chunk-specific output files should be concatenated in order of their
positions along a chromosome for easier downstream interpretation.

PERFORMING POST-IMPUTATION QC AND ASSOCIATION TESTING

Jonathan Marchini distributes an association-testing program called SNPTEST that
is designed to work seamlessly with output files from IMPUTEZ2. SNPTEST performs
a number of Bayesian and frequentist association tests, and it also reports metrics
that can be used to filter out poorly imputed SNPs. For more details, please visit the
SNPTEST webpage:
http://www.stats.ox.ac.uk/~marchini/software/gwas/snptest.html.

EMPIRICAL RESULTS AND COMPUTATIONAL BENCHMARKS

To get a rough idea of the computational burden and accuracy of a pre-
phasing+imputation analysis, we performed an experiment using real data from the
Wellcome Trust Case Control Consortium (WTCCC). We started with 2,500 controls
from the 1958 British Birth Cohort who were genotyped on both the Affymetrix 6.0
and [llumina 1.2 M platforms. We masked all chromosome 10 SNPs except those on
the Affymetrix 500k platform, and we phased this pseudo-Affy 500k data using the
phasing tools described above. Once we had generated haplotypes for the observed
data, we imputed the masked SNPs from a reference panel of 120 CEU haplotypes
from the 1,000 Genomes project. By comparing the masked-then-imputed
genotypes with their true values, we were able to assess the accuracy of different
imputation strategies.

On a 2.5 Ghz processor, it took about two hours and 500-700 Mb of RAM to phase an
average 5-Mb chunk on IMPUTEZ2’s default settings (k=80, iter=30, burnin=10);
when spread across a computing cluster with 100 processors, it took ~12 hours of
real time to phase every chunk in the genome. We then used the best-guess
haplotypes from this analysis to impute all of the 1,000 Genomes SNPs that are not
typed on the Affy 500k array. This step took about 15 minutes per chunk, or 90
minutes to impute the entire genome on a cluster, with about 100 Mb of RAM

12

required per process. (Double-check the RAM usage.) We also ran the IMPUTE2
imputation module that uses posterior haplotype samples. The running time for the
pre-phasing step was the same as before, but the imputation step took N times
longer, where N is the number of sampled haplotype sets used for the imputation.
Most of these computational benchmarks would change linearly with the number of
GWAS SNPs and the number of GWAS individuals; the imputation benchmarks
would increase linearly with the number of haplotypes in the reference panel.

The imputation results were most accurate when we averaged across 20 sets of
sampled GWAS haplotypes, although the best-guess GWAS haplotypes achieved
quite good imputation accuracy in much less time. We also ran IMPUTE1 (which
does not have a separate phasing step) on this dataset for comparison. Imputation
from best-guess haplotypes achieved similar accuracy to IMPUTE1 in ~20x less time
(not counting the pre-phasing investment that generated the best-guess

haplotypes).
PRACTICAL GUIDANCE

When you want to perform a single imputation analysis, we believe that the generic
IMPUTEZ2 method provides the gold standard for accuracy and is computationally
feasible for genome-wide association studies. However, the development of high-
throughput DNA sequencing technologies is causing imputation reference data to
proliferate quickly, and in this context many people would like to re-impute their
GWAS multiple times as the reference panels expand. To save computing costs in
this environment, we have developed some modifications to IMPUTEZ can make
each round of imputation much faster, conditional on an initial investment in
phasing the GWAS genotypes well.

We have covered many of the nuances of using IMPUTEZ in this document, but our
basic recommendation is simple: if you are going to pre-phase a GWAS to speed up
multiple rounds of imputation, you should produce a set of best-guess GWAS
haplotypes and impute from these. Each imputation step will be extremely fast, and
while the accuracy will not be as high as possible, it will be fine for most purposes.

If computing resources and expertise allow, we also recommend storing the
posterior haplotype samples from the GWAS phasing. Even if these files are not used
in most rounds of imputation, keeping them around allows you to run the more
intensive and accurate imputation modules in the future without having to re-phase
your GWAS data. For example, you might use the best-guess haplotypes to quickly
explore the results that arise from new reference panels, and then use the sampled
haplotypes to impute from a “final”, stable reference panel as you prepare to submit
a manuscript.

13

BUILDING A PIPELINE

In the QUICK START section near the beginning of this document, we did not discuss
all of the example scripts in the impute2 examples/ directory that comes with this
download. The additional scripts are meant to provide a template for setting up a
fully automated parallel computing pipeline. The scripts may not work “right out of
the box”, depending on the details of your computing environment, but they should
nonetheless give you a good idea of how we run this kind of analysis on a genome-
wide scale. Expert users are welcome to do things differently, but we thought it
would be helpful to provide a concrete example for people with less experience.

In this discussion, we will focus on the phasing scripts for simplicitly; the analogous
imputation scripts follow an almost identical structure. The top-level script is called
master phasing script.sh. Thisis a simple bash script that calls a client R script
for each human autosome (chromosomes 1-22).

The R script (submit_impute2 jobs to_cluster.R) accepts a couple of
command-line arguments. One of these specifies which chromosome to process; it is
convenient to make a separate call to the script for each chromosome because the
data should be divided into chromosome-level files. There are also three boolean
arguments. By setting one of these to “TRUE’ on the command line, you tell the script
what kind of IMPUTE?2 functionality to invoke.

Once it has processed your command-line directives, the R script does two things.
First, it reads in a separate file that defines the analysis chunks for the current
chromosome. There is an example of our version of this file in the provided
directory (data_files/analysis chunks 5Mb_chrl0.txt). Next, the script uses
the ‘qsub’ command to submit an appropriate IMPUTEZ job to the grid engine
(which is essentially a piece of software that manages a computing cluster). The
actual IMPUTE2 command is embedded in one of the bash scripts that we
introduced in the QUICK START section. The grid engine will decide which processor
to use for the job and get it started - now you just need to wait for the results!

We hope that this example pipeline is helpful, and that you may even be able to use
some of these scripts for your own analyses. You will almost certainly need to
change parts of these files, and you should make an effort to understand what
they’re doing by reading this document, but you are welcome to build on the
backbone we have provided.

14

CONTACTING THE AUTHORS

If you have questions about this instruction manual, or about IMPUTEZ2 in general,
you should contact both of the following people:

Dr. Bryan Howie - bhowie@uchicago.edu
Dr. Jonathan Marchini - marchini@stats.ox.ac.uk

If you have specific questions about why the program isn’t working properly on
your system, please send a copy of the ‘summary’ output file with your e-mail.
Thanks for using IMPUTE, and good luck.

15

